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Computation of Near-Field Microwave
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Abstract —Applications of microwave radiometry for thermometry of
bulk materials require the development of methods of computation of
the radiometric signals. Owing to the reciprocity theorem, the radiomet-
ric signals can be deduced from a knowledge of the near field radiated in
the assumed lossy material by the antenna which is being used as a
probe in the radiometric operation. In this paper, we propose a modal
method for computing the field. This method has first been tested in an
active process by measurements of the radiated field. It also gives
excellent agreement with experimental data obtained in the bands around
1.5 and 3 GHz over a lossy material (water) in both total power and
correlation radiometry.

I. INTRODUCTION

ICROWAVE radiometry is being used in order to

measure the near-field thermal noise transmitted by
lossy materials in the microwave frequency range. This non-
invasive method is of interest for medical investigations.
Because of the moderate absorbtion of living tissue and the
temperature gradients which occur in the human body, it is
now acknowledged that this technique is able to provide
information about the temperatures in tissue to depths of
several centimeters. As a matter of fact, studies have been
carried out on the construction of systems devoted to appli-
cations such as total power radiometers [1]-[5], radiometric
imaging [6], and correlation radiometers [7]-[11]. Several
works have already shown the potential of such techniques
for diagnostic applications [1], [3], [4], [12], for the control of
hyperthermia [13]-[15], and for other thermological applica-
tions [16]. Attempts are also being made to deduce the
temperature distribution in the volume submitted to radio-
metric investigations [5], [17]-[19]. Before working out the
problem of inversion, we need to solve the direct problem,
i.e., to compute the radiometric signals in order to forecast
the influence of the nature of the material, the size, the
depth and the shape of the thermal structures, as well as the
characteristics of the probe and frequency. A method of
computation is also needed in order to define the data
processing compatible with a significant positioning of multi-
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probes and data processing in the synthesis of radiometric
images.

In this paper we first recall that the computation of
radiometric signals requires a knowledge of the field trans-
mitted by the antenna (or probe) at any point in the lossy
material under test. After surveying other works in this field,
we present our work, which is based on a modal method of
determining the near field transmitted in a lossy material by
means of a rectangular waveguide aperture. The principle of
this method is discussed, and its results are verified by
experiments both in an active process (when the antenna
transmits a signal toward the material) and in a passive
process (when the antenna receives the thermal noise trans-
mitted by the different subvolumes of the material). The
radiometric data concern both total power radiometry and
correlation radiometry.

II. PrincCIPLE OF COMPUTING
RADIOMETRIC SIGNALS

We first consider the case of a total power radiometer, or,
what is always achieved in practice, a Dicke radiometer [20],
which reduces to an analogous situation. In this case (Fig. 1),
the output signal is proportional to the noise power received
by the probe, or antenna, placed flush on the material under
test. According to the fluctuation—dissipation theorem [21],
the spontaneous movements of electrical particles and dipole
moments of the material create random electric and mag-
netic fields £;(¢+) and ht) while these fields create electro-
magnetic noise signals which are received by the probe.
Taking into account the incoherent character of these signals
(thermal noise), the total field E(¢, f) received by the probe
in a small bandwidth around the frequency f is the sum of
electromagnetic signals transmitted by the different subvol-
umes called AV,. In this way,

E(t,.f)= Y a(f)¢(1)

=1

(1)

with a,(f) a parameter describing the coupling between the
probe and AV,. Consequently, the output signal of the ra-
diometer becomes

S(FY=G(IEX(1,f))=G(f) L al ()X (2)

=1
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Fig. 1. Origin of the radiometric signals in the case of a classical

radiometer.

with G(f) the transmittance (or power gain) of the receiver
at the frequency f. According to the dissipation—fluctuation
theorem, {{?(¢)) is proportional to the local absolute tem-
perature T; in AV,. Consequently,

S(f)=G(f) L C(N)T,

=1

(3)
where

CAf) =ai(f) 4

or the weighting function of AV, with respect to the probe.

In other words, let us consider the situation described in
Fig. 1, in which the receiver is a matched load, and the whole
system is at thermodynamic equilibrium. The part of the
noise power emitted by the matched load, for a limited
bandwidth A f, around a frequency f, which is dissipated in a
subvolume AV, of the lossy material, is necessarily equal to
the noise power transmitted from AV, to the matched load
through the probe. Indeed, this proposition must be achieved
in order to agree with the second principle of thermodynam-
ics, which asserts that the whole system must continue to be
at thermal equilibrium. Moreover, the matched load associ-
ated with the probe and the subvolume AV can be consid-
ered as two antennas, for which the reciprocity theorem
applies. This process occurs in the same way for the different
bandwidths Af in terms of the principle of detailed balanc-
ing [22].

Consequently, the radiometric signal can be expressed in
terms of an excess of radiometric temperature AT, with
respect to the reference temperature T, i.e.,

AT, = Y CAT,

i=1

(%)
with
T,=T,+AT,. (6)

According to the principle of detailed balancing and the
reciprocity theorem, we have

a,(f)=KE(f) (7

or

Ci= Kz‘Tinz(f) (8)
with o; and E,(f) being the conductivity of the material and
the electric field radiated at AV, by the probe when trans-
mitting a monochromatic signal at f. The parameters K,
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Fig. 2. Origin of the radiometric signals in the case of a correlation
radiometer.

and K, can easily be determined because in the case of a
material at uniform temperature T+ AT we have
AT, =AT(1-1pl) (9)
where p is the wvoltage reflection coefficient at the
probe—material interface. As a matter of fact, relation (3)
has to be integrated over the bandwidth of the radiometer.
In conclusion, as a consequence of relations (7) and (8), we
stress that computation of radiometric signals requires a
knowledge of the field distribution radiated in the material
in the active process.

A correlation radiometer works in a different manner. In
this kind of system (Fig. 2) two probes, put for example flush
on the lossy material under test, are connected to a mi-
crowave correlator [7]. This system reduces to an analog
microwave multiplier connected to a delay line (which pro-
duces the delay time of the correlator) and followed by an
integrator.

The previous reasoning about the transmission of thermal .
noise signals is applied here again. In this way, the new
expression of the coupling of the system to a subvolume AV,
for a small bandwidth around the frequency f, becomes

C/(f.m)=a,(f 1) af(f.1+ ) (10)

where a,(f) is the term as defined by relations ), 2), (7,
and (8) with respect to the probe j, 7 is the delay time
considered and the asterisk denotes complex conjugate.
Hence

C/(f,7) =Ko (fYE,(f,0) ES(f.e +7)AV, (11)

where E (f,t) and E,(f,¢) are the fields created in AV
when the antennas j (j=1 or 2) are active and fed by the
same monochromatic generator at the frequency f. K; is a
calibration factor.

Relation (11) can also be written as [7]

C/(f.7)=Kso,(fEL(])]
| Ey, (f)lcos (P, — Dy, — AD) -cos VAV, (12)

where @, and ®,, are the phase shifts relative to the fields
radiated in AV, by the two probes, ¥ is the angle between
the orientation of the fields E,(f) and E,(f), and A® is
2I1f7 or the phase shift introduced by the delay time 7.
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As a matter of fact, this process defines a synthetic aper-
ture antenna with weighting functions which depend on a
greater number of parameters than in total power radiome-
ter. The output signal of the system, however, is given in a
form similar to that of the total power radiometer, i.e.,

S(f,r)=G'(f) ¥ C/(f,0T, (13)

=1

where G'(f) is the transmittance of the correlator. In other
words, the radiometric signal is expressed in terms of a
radiometric temperature:

= ) C/AT,.
i=1

(14)

Here also relations such as (13) and (14) have to be inte-
grated over the bandwidth of the system.

III. CompPUTATION OF THE FIELD RADIATED IN THE
AcTIVE PROCESS

We consider next the case of the field radiated by the
aperture of a monomode rectangular waveguide in a semi-
infinite homogeneous lossy material. The determination of
the electric field in three dimensions requires us to consider
the discontinuity between the two media, taking into account
the mode matching technique of the transverse fields. The
rigorous processing requires very complex methods and pro-
hibitive computation times. Consequently, approximations
are often needed which depend on the formulation of the
problem. Several authors have considered this approach,
mainly in the modeling of applicators for therapeutic hyper-
thermia or probes for radiometry.

Guy [24] has studied the dosimetry of electromagnetic
radiation for research concerning biological effects. Consid-
ering the same structure as reported here, he employed a
spectral approach deduced from the Fourier transform such
as that proposed by Villeneuve and Harrington [25], [26].
Bardati ef al. [27] used a multimode two-dimensional model,
which is the basis for a multispectral temperature retrieval
method. Cheever et al. [28] started from the mode matching
technique as described by Harrington in order to compute
the penetration depth along the axis of the structure (dis-
tance over which the power density is reduced by a factor
1/e). Bolomey et al. [29] and Rebollar et al. [30] studied the
model of a junction between a monomode waveguide and an
oversized waveguide filled with lossy material. An integral
representation of the fields at the discontinuity between the
two waveguides leads to the solution of systems of linear
equations in matrix form (moment method). In order to
cancel the influence of the walls of the second waveguide, it
is necessary to consider an important ratio between the
dimensions of the waveguide, leading to a matrix which
occupies a memory of large size in the computer. Because of
this drawback, other authors are rather reticent about this
type of method [28]-[34].

For this reason, we have chosen a more realistic model of
a waveguide aperture actually in contact with a semi-infinite
lossy material. Moreover, our solution includes an analytical
calculation associated with an iterative method, which avoids
the processing of a large size matrix.

tm
f 9pa.TMpqdpq

®

ya

\

@ TE, @ .
—]
Zp.m.TEmn .

et

@ _[ qpq Tqu

Fig. 3. Modeling of the near field radiated by the aperture of the
rectangular waveguide (dimension « x b) filled with a solid dielectric
(medium 1: €, () in an homogeneous lossy material (medium 2: €5 =
€5 — je§; 0, =€ge4w). Medium 3 surrounding the waveguide is free
space (air) (g, )

Analysis

Consider the structure shown in Fig. 3, which includes a
rectangular waveguide filled with a dielectric (e, 1), and an
aperture in contact with a homogeneous, isotropic, semi-
infinite lossy material of complex permittivity e = €} — jej
(conductivity o, = e4efw).

The propagation equations of the electromagnetic struc-
tures are

A+T? [EZ ] -0 1

[a+T2]| 5o (15)

where i equals | in the waveguide and 2 in the lossy

material. Taking into account the boundary conditions, the

characteristic equations in mediums 1 and 2 are as follows.
For medium 1,

2 2

7 =k2+k2= B2=(2m+1)> -—+4n (16)

051

where m and ne N, a and b are the dimensions of the
waveguide, and k, and k, are the transverse wavenumbers.
Consequently, we solve for the phase constant:

2 271/2

5 ST 7
Bi=|kje,~(2m+1) — —4n’— (17)

a b~

For medium 2,
I3 (p.a)=kies —v3(p.q) (18)
with

v5(p,q) = Bo(p,q) — jay(p,q) (19)

being the propagation constant. Thus, the continuous modes
in medium 2 are defined by three parameters: p, g (the real
transverse wavenumbers), and y,(p, q). These quantities are
bound by the following relation:

PP+ q* +v3(p.q) = kiex. (20)
From (18), (19), and (20) we can deduce the phase constant
B.(p,q) and the attenuation constant a,(p,q) of the propa-
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gating modes, i.e.,

1
B3(p.q) = E{kéeé -p’-q°

2
(ks —p? - g+ kier?] ) 1)

ay(p,q) =kges /2B:(p,q) (22)

where k3 = weouq.

As p and g can assume all values, B,(p,q) can also
assume an infinite number of values. Consequently we have
to consider a continuous spectrum of modes. In our particu-
lar situation, taking into account the fact that the second
medium is lossy, and the existence of a gradient of refractive
index between mediums 2 and 3 (surrounding the waveguide),
we can assume that no backward continuous mode propa-
gates in medium 3 [31].

1) Continuity Equations: Study of the discontinuity be-
tween the waveguide aperture and the lossy material leads to
relations, in the corresponding plane, between all the exist-
ing modes (technique of mode matching) [26]. Thus we
consider the continuity of all the tangential components of
the electromagnetic fields in this plane. The expression of
these continuity conditions requires first a knowledge of all
the modes on both sides of the discontinuity. The continuity
equations in our problem are

Elo{;}(l"' Pm)‘*“ ZPmnEte<;>(m”)

=ff:[q’e(pq)E’e{)yc}(pq)

+a™(pa) E™{}(p0) | dpda (23)
H S (1= p1o) = Loy H (3 }(mn)

- [ [ et a(} }(sa)

(o) B {7} } (o) | dpdia. (24)

In these expressions, the total field in the waveguide is the

“sum of the fields associated with the incident TE;, mode
and higher discrete TE,,, modes reflected by the discontinu-
ity while p,, and p,,, are the coupling functions associated
with these modes. The quantities ¢‘*(p,q) and q'™(p,q)
are, respectively, the coupling functions of the transmitted
continuous modes:

E"’{';}(pq),H’”<)yc>(Pq)

E(3 }pa), H™( }(pa).

2) Coupling Functions: The characterization of the discon-
tinuity consists in the determination of the unknown cou-
pling functions ¢'¢, ¢'”, p,.,» and py,. Several solutions have
already been proposed [32]. In the present case, we trans-
form the continuity equations into a system of coupled
integral equations taking into account the orthogonality
properties of the modes on both sides of the discontinuity.

These coupled integral equations can be solved by means of
an iterative method using Neumann series [32].

Nevertheless, considering realistic approximations of the
present problem (with a lossy material in part 2) [31], the
zero-order solutions of the Neumann series can accurately
describe the near-field phenomena. Consequently, the zero-
order solutions make possible an analytical determination of
the coupling coefficients, i.e.,

Biolval (25)

te te 10
q y = N <H lE >
(pa |Y;|2+Bl(l(§2+1a2) pey
Biolvalles|
qtm — - <HtmlE1()> (26)
PO (es+ jes)(Brgya + kdeg) P4

1 *© Y2
P1()='4‘.ff0 q' (Pq)w[ﬁm—72]<H,§q|E;°>dpdt1

(31072 - kgf;)
ki(es +jez)

1 o
- tm tm| 710
+3/) a0 (HPIEL) dpdg

(27)

where 8, is the phase constant of the fundamental incident
TE,, mode.

Another equation can be added, which represents the
energy conservation condition at the discontinuity, and al-
lows us to test the modal method, i.e.,

1=lpwl”+ [ [ [la"(pa) PR(P(p0))

+lg"( pa)I*R(P( pg))] dpda. (28)

3) Fields in Lossy Region: Once the analytical determina-
tion of the coupling functions ¢‘“(p,q) and q""(p,q) is
completed and once modes on both sides of the discontinuity
are tabulated, we get the following expressions of the compo-
nents of the electric field:

E.(x,y,2) =ff0w[qt‘)(pq)E;"(pq)

- +q"(pq)E!"(pq)|e " dpdg  (29)
Ey(x,y,2)=ff0 [a"(pa) EL (pq)
+ qtm(pq)E}t‘m(pq)]e—h’z: dpdq (30)

E;(x,y,2)=ff0 a""(pq) E{"(pg)e " dpdq. (31)

Note that these quantities, combined with the conductivity,
will allow the determination of the radiometric weighting
functions C, and C/ (relations (8) and (12)) at any point in
the lossy material.

IV. PRELIMINARY VERIFICATIONS OF
NUMERICAL RESULTS

A. Energy Balance in the Plane of Discontinuity
This test is carried out by means of relation (28), which

expresses the conservation of energy in the plane of the
discontinuity.
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TABLE 1
VERIFICATION OF THE ENERGY BALANCE IN THE PLANE OF THE DISCONTINUITY
(EN* Is THE POWER IN MEDIUM 2 AT Z = 0)

€ Lossy Material

(Waveguide) €2

€2 FGHz 1-|p,/*> EN*

Ecart %

High water Water 78

25 content
tissue

25 Low water
content

12 tissue

Muscle 46
Aceton 21.1

Fat tissues 5.5

13 3 0.878  0.879 0.1
0.943

0.993

0.943
1.06

<0.1
6.6

12 3
15 3
0.973

1 3 1.13 14

4

I/l 14 1EE

(a) (b)

Fig. 4. Verification of the linking up of the electric field in the
discontinuity plane: field in the waveguide at Z=10; A a field in
the semi-infinite medium at Z = 0. (a) Muscle tissue (e} =46, 0, =2
S/m). (b) Water (e} =77, 0,=1.85S/m). F=3 GHz, ¢,=25, Y=0,
a=2b=22 mm.

Table I shows examples of computed data. Note that this
study is mainly devoted to medical applications. For this
reason we have limited our computations to the case of the
permittivities of living tissue. The experiments are carried
out on usual lossy liquids. However, the conclusions of this
paper also have a bearing on any kind of nonmetallic mate-
rial. In the general case of very lossy materials (such as
high-water-content tissues) the power difference between the
two sides of the discontinuity is smaller than 1%. This
characteristic warrants our hypothesis, in which we neglect
the higher order modes in the waveguide. Nevertheless, for
low-loss materials, such as low-water-content tissues, the
difference in power between the two sides can reach 14%,
which means that the higher order modes in the waveguide
should be taken into account. This problem is being taken
into account at the present time and will be explained in a
future paper.

B. Electric Field in the Plane of Discontinuity

We verity the two hypotheses which consist of neglecting
the backward-traveling higher order modes in the waveguide
and medium 3 (Fig. 3). For this, we have to verify the
equality of the fields in the plane of the discontinuity. Parts
(a) and (b) of Fig. 4 show such examples of values of the field
on both sides of the discontinuity for high-water-content
materials. The two sets of values (in the waveguide and in
the lossy material) are in quite good agreement.

|
[qte]

F=83GHz;:'y =47;¢"y =12
a=2b=22mm;¢| =25

wn

F=3GHz;¢y =47;¢" =12
a=2b=22mm;}, =25

w

(b)

Fig. 5. Coupling functions ¢‘“ of the modes transmitted in the semi-
infinite material (muscle tissue) as a function of the transverse
wavenumbers p and g: (a) ¢'“ versus p; (b) ¢'“ versus q.

C. Numerical Stability

The numerical stability results from the number of contin-
uous modes p and g which are considered and also from the
discretization of the domains (0, p,,,,) and (0, g,,,,), for which
the numerical integration leads to expressions (28) to (30).
The determination of p.,, and q,,, and of the integration
steps is arrived at by studying the coupling functions q'“(p, q)
and ¢""(p, q). In Fig. 5 we give an example of the variation
of g’ versus p and g for high-water-content tissue at
3 GHz. We note that the contribution of the continuous
modes can be neglected for p and ¢ greater than 600 m~ .
Moreover, the discretization of the integration domain re-
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Fig. 6. Comparison between theory and experiment for the reflection
coefficient between a rectangular waveguide aperture and water or
chloroform: modal method; a o computed [34]; A Ao experi-
ment.

Areed Jhsmeol

-] 1_ Xem

(a)

Fig. 7. Field transmitted in water ((a) and (b)) by a waveguide aperture
(a=2b=22 mm; ¢;=16) at 3.2 GHz: modal method; ®® com-
puted [29]-[34]; ** experiment.

sults from the velocity of variations of the functions g’“(p, q)
and g'""(p,q).

V. CoMPARISON BETWEEN THEORY AND
EXPERIMENTS IN THE ACTIVE PROCESS

In this section, we consider experiments made in the
following way. A monochromatic microwave source is con-
nected to the different kinds of probes (waveguide apertures)
which are also used in the radiometric experiments. The
construction, characteristics, and tests over such probes have
been described in previous papers [33], [34]. The waveguide
apertures transmit a microwave signal in a homogeneous
lossy material.

We first present, in Fig. 6, a comparison between.the
computed and measured reflection coefficients. A good
agreement between our experiments, the present modal
methad, and previously reported computed data [34] is illus-
trated.

Other comparisons refer to the field transmitted in the
lossy materials. This field mapping is carried out by means of
small monopole antennas connected either to a square law
detector or to a network analyzer.

We note that a good agreement between our modal
method, -experiment and methods already published [34]

:_‘/’ x 102/ Bezy=0)

0

Fig. 8. Field transmitted in water by a waveguide aperture (a = 2b = 22

mm, F =3 GHz, z =2 cm). Phase of field versus x and y: modal
method; @* experiment.
WATER
To +AT
D =
To
WATER 32
Pnoaﬂ
S
- ‘ RADIOMETER| or
ATm

Fig. 9. Physical model used in experiments carried out for compact
thermal structures.

considering that the lossy material fills an oversize wave-
guide, is obtained. These data, which consider either the
amplitude or the phase shift of the field as a function of
different geometrical parameters x, y, and z are reported in
Figs. 7 and 8.

V1. EXPERIMENTAL VERIFICATION OF
RapioMETRIC DATA

We first consider total power radiometry. The physical
model which has been considered is shown in Fig. 9. In a
semi-infinite homogeneous lossy material at a temperature
T, a cylindrical structure of the same material, (diameter D)
is at a different temperature T,+ AT. The axis of this
structure is perpendicular to the interface; the structure is at
a distance z from the interface.

The radiometric signals are computed by appllcatlon of
relations (5), (8), and (9), while the values {E(f)| are com-
puted by means of the modal method. We have considered
the case of water with 7, =33°C and AT = 5°C. This small
value of AT allows us to assume the same permittivity at any
place in the model regardless of the temperature. ’

The radiometer working frequencies are ‘1.5 GHz+0.5
GHz and 3 GHz+0.5 GHz. The corresponding bandwidths
are taken into account in the computation. The values of the
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Fig. 10. Radiometric signals in the situation described in Fig. 10 in the
case of water: T, =33°C, AT =5°C (probe ¢, =25, a=2b=22 mm),
modal method; | experiment.

permittivity of water are taken from [35]. The same model
has been realized in practice and the measurements have
been achieved by means of two radiometers having the above
frequencies, i.e., 1.5+0.5 GHz and 3+ 0.5 GHz.

A comparison between computed and experimental data is
given in Fig. 10 in terms of the ratio AT,, /AT versus z for
different diameters D of the structure. The considered situa-
tion is related to the position of the probe facing the center
of the thermal structure, i.e., the position of the probe
receiving the maximal noise power. We note that the com-
puted values are always within the error margins of the
experimental data [6], [31]. Note also the necessity for using
a three-dimensional model: such results point out that, for
the same value AT, the radiometric signal depends both on
the depth of the structure and on its size (D in the present
case).

Other comparisons between theory and practice are re-
lated to correlation radiometry. The correlation radiometer

¥z

Fig. 11. Signal of a correlation radiometer: for water at T, = 30°C the
thermal structure (A7 =19°C) is a cylinder (diameter D = 2 ¢cm) parallel
to the line of junction of the probes (® = 30°, angle between the axes of
observation of the probes): —-° modal method; A * experiment.

has been described in previous publications [7], [8]; its band-
width is 2—-4 GHz.

Concerning the computations, the coupling parameters C;
for the different subvolumes AJ; have been defined in
relation (12). Consequently for a lossy material at a tempera-
ture 7§ in which a volume V' is at a temperature T§ + AT
and for a small bandwidth near the frequency f we get an
output signal

S(fr)=G(f) T AT (32)

i=1
s(f.7) =G| L Ci(fn)(Ti+AT) + X C,-’(f,r)To’]
NS &V
(33)

B 0
S(f£,m)=G'(f)] X C/(f,m)AT+ ¥ C,'(fﬂ)To’]. (34)
| lieV =1

A consequence of the principle of detailed balancing [22]
is that our correlator radiometer output signal is zero when
the temperature of the lossy material is uniform [7]. Hence,
the expression for the output signal reduces to

S(f,im)=G'(f) X C/(f.7)AT.

eV

(35)

A comparison between theoretical and experimental val-
ues of S(f,7) is related to the different kinds of thermal
structures in water. In Fig. 11, we consider a cylinder whose
axis is parallel to the line of junction of the two probes. The
signal, given as a function of the delay AL =2Cr, corre-
sponds to two positions of the thermal structure (X = 0 and
X =05 cm).

In Fig. 12, we consider that a plane surface, parallel to the
plane of symmetry of the two probes, defines two parts of the
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-1}

Fig. 12. Signal of a correlation radiometer: case of water: two parts
respectively at 7, = 20°C and T, + AT (AT = 5°C) are separated by a
plane area parallel to the plane of symmetry of the probes (@ = 30°,
Z,=5mm), r=0: modal method; ** experiment.

lossy material, one being at a temperature T, and the other
at Ty + AT. Fig. 12 refers to the output signal as a function
of position X, of the area limiting the two parts of the
material at T, and T, + AT.

In all these situations, we observe quite a good agreement
between the results of the radiometric data, as deduced from
the modal method explained in this paper, and the experi-
ments. Note also that correlation radiometry is particularly
able to detect a small variation of the position of a thermal
structure either by a modification of the position of the
double probe or by action on the delay time 7.

VII. CoNcCLUSION

We have developed a method for computing of the near
field transmitted by a monomode rectangular waveguide
aperture into a homogeneous lossy material. This method

has been applied to the computation of radiometric signals’

for both total power and correlation radiometry. Following
preliminary verifications, comparison of the radiometric with
experimental data points out quite a good agreement in the
case of models made of water near 1.5 and 3 GHz. Conse-
quently, this method of computing the radiometric signals
can now be used for medical applications, in which high-
water-content tissues often correspond to practical situations
[36].
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